The Bayesian brain: the role of uncertainty in neural coding and computation

David C. Knill and Alexandre Pouget

Center for Visual Science and the Department of Brain and Cognitive Science, University of Rochester, NY 14627, USA

To use sensory information efficiently to make judgments and guide action in the world, the brain must represent and use information about uncertainty in its computations for perception and action. Bayesian methods have proven successful in building computational theories for perception and sensorimotor control, and psychophysics is providing a growing body of evidence that human perceptual computations are ‘Bayes’ optimal’. This leads to the ‘Bayesian coding hypothesis’: that the brain represents sensory information probabilistically, in the form of probability distributions. Several computational schemes have recently been proposed for how this might be achieved in populations of neurons. Neurophysiological data on the hypothesis, however, is almost non-existent. A major challenge for neuroscientists is to test these ideas experimentally, and so determine whether and how neurons code information about sensory uncertainty.

Bayesian inference and the Bayesian coding hypothesis

The fundamental concept behind the Bayesian approach to perceptual computations is that the information provided by a set of sensory data about the world is represented by a conditional probability density function over the set of unknown variables – the posterior density function. A Bayesian perceptual system, therefore, would represent the perceived depth of an object, for example, not as a single number Z but as a conditional probability density function $p(Z/I)$, where I is the available image information (e.g. stereo disparities). Loosely speaking, $p(Z/I)$ would specify the relative probability that the object is at different depths Z, given the available sensory information.

More generally, the component computations that underlay Bayesian inferences [that give rise to $p(Z/I)$] are ideally performed on representations of conditional probability density functions rather than on unitary estimates of parameter values. Loosely speaking, a Bayes’ optimal system maintains, at each stage of local computation, a representation of all possible values of the parameters being computed along with associated probabilities. This allows the system to integrate information efficiently over space and time, to integrate information from different sensory cues and sensory modalities, and to propagate information from one stage of processing to another without committing too early to particular interpretations. Bayesian statisticians refer to the idea of representing and propagating information in the form of conditional density functions as belief propagation, and this approach has been highly successful in designing effective artificial vision systems [21–23].

To illustrate the basic structure of Bayesian computations, consider the problem of integrating multiple sensory cues about some property of a scene. Figure 1 illustrates the Bayesian formulation of one such problem – estimating the position of an object X from visual and auditory cues V and A. The goal of an optimal, Bayesian observer would be to compute the conditional density function $p(X|V,A)$. Using Bayes’ rule, this is given by

$$p(X|V,A) = p(V,A|X)p(X)/p(V,A)$$

(Equation 1)

where $p(V,A|X)$ specifies the relative likelihood of sensing the given data for different values of X and $p(X)$ is the prior probability of different values of X. Because the noise
integrated estimate should be biased toward the more estimate. When one cue is less certain than another, the uncertainty of each cue when deriving an integrated optimal integrator must take into account the relative cost associated with making different types of errors. Being at any given position. An optimal estimator could pick a function representing the relative probability of the target functions associated with each cue and the prior density function. The posterior density function is therefore pro-

Two examples in which auditory and visual cues provide 'conflicting' information about the direction of a target. The conflict is apparent in the difference in means of the likelihood functions associated with each cue, although the functions overlap. Such conflicts are always present, owing to noise in the sensory systems. To integrate visual and auditory information optimally, a multimodal area must take into account the uncertainty associated with each cue. (a) When the vision cue is most reliable, the peak of the posterior distribution is shifted toward the direction suggested by the vision cue. (b) When the reliabilities of the cues are more similar, for example when the stimulus is in the far periphery, the peak is shifted toward the direction suggested by the auditory cue. When both likelihood functions are Gaussian, the most likely direction of the target is given by a weighted sum of the most likely directions (μ) given the visual (V) and auditory (A) cues individually: μV,A = (wV μV + wAμA). The weights (w) are inversely proportional to the variances of the likelihood functions.

sires in auditory and visual mechanisms are statistically independent, we can decompose the likelihood function into the product of likelihood functions associated with the visual and auditory cues, respectively:

\[P(V,A|X) = p(V|X)p(A|X) \]

(Equation 2)

\[p(V|X) \] \(p(A|X) \) fully represent the information provided by the visual and auditory data about the position of the target. The posterior density function is therefore proportional to the product of three functions: the likelihood functions associated with each cue and the prior density function representing the relative probability of the target being at any given position. An optimal estimator could pick the peak of the posterior density function, the mean of the function or any of several other choices, depending on the cost associated with making different types of errors.

For our purposes, the point of the example is that an optimal integrator must take into account the relative uncertainty of each cue when deriving an integrated estimate. When one cue is less certain than another, the integrated estimate should be biased toward the more reliable cue. Assuming that a system can accurately compute and represent likelihood functions, the calculation embodied in equations 1 and 2 implicitly enforces this behavior (Figure 1). Although other estimation schemes can show the same performance as an optimal Bayesian observer (e.g. a weighted sum of estimates independently derived from each cue), computing with likelihood functions provides the most direct means available to account 'automatically' for the large range of differences in cue uncertainty that an observer is likely to face.

This is the basic premise on which Bayesian theories of cortical processing will succeed or fail – that the brain represents information probabilistically, by coding and computing with probability density functions or approximations to probability density functions. We will refer to this as the ‘Bayesian coding hypothesis’. The opposing view is that neural representations are deterministic and discrete, which might be intuitive but also misleading. This intuition might be due to the apparent ‘oneness’ of our perceptual world and the need to ‘collapse’ perceptual representations into discrete actions, such as decisions or motor behaviors. The principle data on the Bayesian coding hypothesis are behavioral results showing the many different ways in which humans perform as Bayesian observers.

Are human observers Bayes’ optimal?

What does it mean to say that an observer is ‘Bayes’ optimal’? Humans are clearly not optimal in the sense that they achieve the level of performance afforded by the uncertainty in the physical stimulus. Absolute efficiencies (a measure of performance relative to a Bayes’ optimal observer) for performing high-level perceptual tasks are generally low and vary widely across tasks. In some cases, this inefficiency is entirely due to uncertainty in the coding of sensory primitives that serve as inputs to perceptual computations; in others, it is due to a combination of sensory, perceptual and cognitive factors. The real test of the Bayesian coding hypothesis is in whether the neural computations that result in perceptual judgments or motor behavior take into account the uncertainty in the information available at each stage of processing. Psychophysical work in several areas suggests that this is the case.

Cue integration

Perhaps the most persuasive evidence for the Bayesian coding hypothesis comes from work on sensory cue integration. When the uncertainty associated with each of a set of cues is approximated by a Gaussian likelihood function, the average estimate derived from an optimal Bayesian integrator is a weighted average of the average estimates that would be derived from each cue alone (Figure 1). The reliability of different cues changes as a function of many scene and viewing parameters (e.g. the reliability of stereo disparity decreases with viewing distance). When these parameters vary from trial to trial in a psychophysical experiment, an optimal Bayesian observer would appear to weight cues differently on different trials. Studies of human cue integration, both within modality (e.g. stereo and texture) and...
across modality (e.g. sight and touch or sight and sound) [29–32], consistently find cue weights that vary in the manner predicted by Bayesian theory. Although these results could be accounted for by a deterministic system that adjusts cue weights as a function of viewing parameters and stimulus properties that co-vary with cue uncertainty, representing and computing with probability distributions (Figure 1) is considerably more flexible and can accommodate novel stimulus changes that alter cue uncertainty.

Non-linear Bayesian estimation
One of the strongest computational arguments for representing density functions in intermediate perceptual computations is that they are often not Gaussian, so that simple linear mechanisms do not suffice to support optimal Bayesian calculations. Non-Gaussian likelihood functions arise even when the sensory noise is Gaussian as a result of the nonlinear mapping from sensory feature space to the parameter space being estimated. In these cases, computations on density functions (or likelihood functions) are necessary to achieve optimality [33].

Figure 2 shows a simple example in the context of cue integration. Changing the angle of a symmetric figure within its plane (its spin), keeping the 3D orientation of the plane itself fixed (imagine spinning a rectangle around a rod oriented perpendicular to the rectangle), changes the perceived 3D orientation of the plane, even when viewed in stereo [16]. These spin-dependent biases are well accounted for by a Bayesian model that optimally combines skew symmetry information (represented by a highly non-Gaussian likelihood function in Figure 2) with stereoscopic information about 3D surface orientation. The results would not be predicted by a deterministic scheme of weighting the estimates derived from each cue individually.

Perceptual biases and priors
Several recent studies on the role of prior models in perception provide strong evidence for Bayesian computations of the type envisioned here [15,18]. Weiss and Adelson’s [17] recent work on motion provides an illustrative example. They propose a remarkably simple Bayesian model of motion perception in which likelihood functions derived from local, ambiguous motion measurements are multiplied together with a simple prior that biases interpretations to favor low speeds. The interplay between the likelihood functions and the prior density function leads to a complex pattern of directional biases that depends on contrast, edge orientation and other stimulus factors. The model predicts a surprisingly large range of previously unintuitive motion phenomena, suggesting that the brain could perform a similar computation.

Uncertainty and the control of action
The previous examples were all based on the performance of subjects in perceptual tasks. Sensory information, however, primarily serves the function of guiding action in the world. Researchers have recently begun developing techniques for coupling optimal Bayesian estimators to control systems to maximize performance in motor tasks [34]. In much the same way that sensory uncertainty determines the optimal weighting scheme for combining sensory cues for perceptual judgments, sensory and motor uncertainties determine how sensory signals should be used to plan and control movements.

Consider the problem of using sensory feedback from the hand to guide online corrections of hand movements. Because of noise in the motor system and in initial sensory estimates of hand and target position, the movements of an individual are never perfect. Visual feedback from the moving hand should, in theory, be used to make small adjustments to movement trajectories online. How much an observer should trust the visual feedback, however, depends on how reliable it is. For example, when the hand is in the periphery of the visual field, visual estimates of position will necessarily be worse than when it is in the foveal area of the field (and near the target). Similarly, the error in motion signals from the hand scales with velocity, so that motion signals are least reliable around the point of peak velocity. Recent psychophysical studies have shown that humans use continuous feedback from the hand to control pointing movements, but that the relative contributions of different signals (e.g. position and velocity) depend on the expected sensory noise associated with those signals. Moreover, when noise is artificially added to visual feedback about the position of the hand, subjects optimally adjust the degree to which they rely on the feedback to make corrections [14,35,36].

Likewise, how one plans movements should depend on the intrinsic variability in the motor output and the costs associated with various errors. Recent behavioral tests have confirmed that motor plans take into account the uncertainty in motor outputs: ballistic movement trajectories effectively minimize the error in pointing movements, given the signal-dependent properties of motor noise [8], and when costs and gains for different aim points are independently varied, subjects adjust their aim points for fast pointing movements to maximize the expected gain [19,20]. Although not definitive, these results suggest that the brain uses knowledge of the uncertainty in the sensory input and the motor output for visuomotor control.

Neural representations of uncertainty
The notion that neural computations take into account the uncertainty of the sensory and motor variables raises two important questions: (i) how do neurons, or rather populations of neurons, represent uncertainty, and (ii) what is the neural basis of statistical inferences? Several schemes have been proposed over the past few years, which we now briefly review.

Binary variables
The simplest schemes apply to binary variables – that is, variables that can take only two states. This situation arises when subjects are asked to decide between two possibilities, such as whether an object is moving up or down. In this case, the uncertainty of the variable can be encoded in two ways. First, one can use two populations of neurons: one in which neurons respond proportionally to the probability of upward motion, and one in which they
respond to the probability of downward motion. An even simpler scheme involves only one population of neurons that respond proportionally to the ratio of upward and downward motion, equivalent to a quantity known as a likelihood ratio. Single-cell recordings in the lateral intraparietal (LIP) area provide evidence for both schemes. When monkeys are trained to perform one of two possible saccades, a subset of LIP neurons respond proportionally to the probability that the saccade ends in their receptive field [37]. However, when monkeys are trained to distinguish between two possible directions of motion, some LIP neurons integrate information over time in a way consistent with the computation of a likelihood ratio [38]. Similar ideas have also been suggested to interpret neuronal responses in the superior colliculus [39].

Convolution codes and variations

When direction of motion is not confined to two choices, but can take any value around a circle, the previous schemes no longer work. Rather, the brain needs an encoding mechanism that can deal with continuous variables. As described previously, the most natural way to represent uncertainty in a continuous variable is to represent the probability density function of the variable (Figure 3a). Any probability density function, \(p(x) \), can be represented by its value at a few sample points along the \(x \) axis. The more samples are used, the better the approximation. This is the idea behind convolution codes, except that convolution codes avoid gaps between the samples by filtering \(p(x) \) with a Gaussian kernel before sampling [40,41]. Each neuron simply
computes the dot product between its Gaussian tuning curve and the probability density function. Assuming that the tuning curves of the neurons are just translated copies of the same Gaussian profile, the resulting population pattern of activity looks like the original probability density function filtered by the Gaussian tuning curve.

Inferences with convolution codes are straightforward. For instance, given motion and stereo disparity cues for depth, one would like to compute the posterior density function for depth conditioned on motion and stereo information by multiplying the likelihood functions for the observed motion of an object given its depth \(p(m|d) \) with the observed pattern of horizontal disparities given its depth \(p(s|d) \) and a prior distribution over depth. If neurons represent samples of the likelihood functions and the prior density function, a simple point-by-point product operation between the two representations (Figure 3c) is equivalent to multiplying the functions themselves [30, 42].

Gain encoding
An alternative to the convolution code is to use what we call a gain-encoding scheme [46, 47]. This scheme takes advantage of the near-Poisson nature of neural noise [48] to code the mean and variance of a density function simultaneously. To understand how the scheme works, consider the example of orientation selectivity. The primary visual cortex contains neurons with bell-shaped
tuning curves for orientation [49]. If we rank the neurons by their preferred orientations, the population response to a trial of particular orientation \(\theta \) takes the form of a hill of activity (Figure 4b). On any given trial, the shape of the hill is corrupted by near-Poisson noise. To decode such noisy population codes, one can use a Bayesian decoder which returns the posterior distribution over \(\theta \) given the hill of activity, \(p(\theta|A) \) [50,51]. For independent Poisson noise, the posterior distribution is Gaussian, with its mean controlled mostly by the position of the peak of the hill and the variance inversely proportional to the gain of the hill [46]. This is because, for Poisson noise, the variance of the spike count is proportional to the gain. Therefore, a high gain entails a square root of the variance – grows with the square root of the gain over the square root of the variance – grows with the gain over the square root of the variance. Consequently, the noisy hill of activity can be transformed into a Gaussian distribution (i.e. the uncertainty) is inversely proportional to the gain of the activity peak very close to the maximum likelihood estimate of the position. The cues are integrated with weights proportional to their reliability because noisy hills with high gain – corresponding to more reliable cues – provide a stronger initial push and, as a result, have a stronger influence of the final state of the network [47,52].

Although originally applied to object localization, this architecture can be generalized to any cue integration problem. In particular, this approach can be used to account for the performance of human observers in the experiments on cue integration [26–32]. The model can also be extended to time varying problems, such as estimating the position of a moving arm [4].

The gain-encoding model suggests a particularly intriguing role for Poisson variability. At first sight, it would appear that this variability is highly detrimental and severely limits the accuracy with which cortical circuits perform computations. The gain-encoding idea suggests that Poisson noise might in fact be very beneficial: it allows population codes to represent the mean as well as the variance of the encoded variables, the latter being crucial for Bayesian inferences.

It is important to emphasize that the different encoding schemes we have reviewed are not mutually exclusive. Uncertainties can take many forms; for example, the uncertainty due to photon noise in the retina has little to do with the ambiguity due to the aperture problem in motion processing. It is therefore possible that the brain uses multiple encoding schemes. Ultimately, which schemes are used in the brain can be answered only empirically. It is our hope that the accumulation of behavioral data showing that neural computation is akin to a Bayesian inference, and the development of several models of Bayesian inference in neural networks, will compel neurophysiologists to design experiments to test the predictions of these models.

Discussion

We have described psychophysical evidence that shows human observers to behave in a variety of ways like optimal Bayesian observers. The most compelling features of these data in regard to the Bayesian coding hypothesis are: (i) that subjects implicitly ‘adjust’ cue weights in a Bayes’ optimal way based on stimulus and viewing parameters; (ii) that perceptual and motor behavior reflect a system that takes into account the uncertainty of both sensory and motor signals; (iii) that humans behave

Figure 4. Inferences with gain encoding. (a) Idealized Gaussian tuning curves to orientation for 16 cells in primary visual cortex. (b) Response of 64 cells with Gaussian tuning curves similar to the ones shown in (a), in response to an orientation of −20°. The cells have been ranked according to their preferred orientation and the responses have been corrupted by independent Poisson noise, a good approximation of the noise observed in vivo. (c) The posterior distribution over orientation obtained from applying a Bayesian decoder to the noisy hills shown in (b). With independent Poisson noise, the peak of the distribution is given by the peak of the noisy hill, and the width of the distribution (i.e. the uncertainty) is inversely proportional to the amplitude of the noisy hill. Adapted from Ref. [47].
near-optimally even when the sensory information is characterized by highly non-Gaussian density functions, leading to complex patterns of predicted behavior; and (iv) that relatively simple Bayesian models can account for otherwise complex patterns of subjective, perceptual biases, even when the prior density functions built into the models do not explicitly code the biases. We argue that these data strongly suggest that the brain codes even complex patterns of sensory and motor uncertainty in its internal representations and computations. Two challenges for further research emerge from this review.

First, although a growing body of psychophysical work is being devoted to exploring the ways in which humans are optimal observers and actors, an equally important challenge for future work is to find the ways in which human observers are not optimal. Owing to the complexity of the tasks, unconstrained Bayesian inference is not a viable solution for computation in the brain. Recent work on statistical learning, for example, has elucidated strong limits on the types of statistical regularities that sensory systems automatically detect [53–55].

Second, neuroscientists must begin to test theories of how uncertainty could be represented in populations of neurons. We have described several neural coding strategies that might be used to encode probability density functions or their statistical moments; however, the neurophysiological evidence for these schemes is weak. This is not because existing data conflict with the strategies but, rather, because little work has been done to test them. Pursuing this challenge will require further development and application of advanced multi-electrode recording techniques. As these techniques mature, we hope that neuroscientists will take up the challenge to submit the Bayesian coding hypothesis to rigorous falsification tests.

Finally, we acknowledge that the examples presented here are much simpler than many of the perceptual estimation problems faced by the brain. Most notable among the complexities of these problems is their high dimensionality (e.g. contour completion and flow field estimation). Until recently, the problem of efficiently representing and computing with probability density functions in high-dimensional spaces has been a barrier to developing efficient Bayesian computer vision algorithms. The recent development of graphical models [22] and particle filtering techniques [56,57] has shown the most promise for implementing efficient Bayesian algorithms for high-dimensional estimation problems. How these might be implemented by the brain is a major challenge for computational neuroscientists [58].
References

1 Mach, E. (1980) Contributions to the Analysis of the Sensations (C. M. Williams, Trans.), Open Court Publishing Co., Chicago, IL USA
29 van Beers, R.J. et al. (1999) Integration of proprioceptive and visual position-information: an experimentally supported model. J. Neurophysiol. 81, 1355–1364
42 Zemel, R.S. and Dayan, P. (1997) Combining probabilistic population codes. In JCAI-97: 15th International Joint Conference on Artificial Intelligence, Morgan Kaufmann, San Francisco CA, USA