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INTRODUCTION
Genomic disorders make up a family of genetic diseases that are
characterized by large genomic rearrangements, including
deletions, duplications and inversions of specific genomic segments.

Many such rearrangements result in the loss or gain of specific
genomic segments and thus are referred to as copy number variants
(CNV). These regions can contain multiple genes. The phenotypic
abnormalities seen in diseases associated with CNVs are thought
to be related to altered gene dosage effects in most cases (Branzei
and Foiani, 2007). In assessing the medical relevance of a CNV for
a patient with a range of observed phenotypic abnormalities, it is
essential to ascertain whether the CNV is causative for the disease
and/or is merely incidental. If the CNV is, in fact, the cause of the
disease, it is then important to know which of the genes located
within the CNV are associated with which of the phenotypic
features. In this study we focus on the latter challenge.

At present, information on Mendelian disorders that are associated
with about 2000 human genes is available from sources such as
OMIM (Online Mendelian Inheritance in Man) (Hamosh et al.,
2005). However, substantially more information is available from
model organisms such as the mouse and the zebrafish (Schofield et
al., 2012). Furthermore, it has previously been shown that model
organism phenotype data can be used for the analysis of human CNV
disorders. For instance, Webber and co-workers investigated CNVs
associated with mental retardation by linking the genes in these CNVs
with phenotypes found in mouse gene-knockout models and showed
that pathogenic mental-retardation-associated CNVs are significantly
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SUMMARY

Numerous disease syndromes are associated with regions of copy number variation (CNV) in the human genome and, in most cases, the pathogenicity
of the CNV is thought to be related to altered dosage of the genes contained within the affected segment. However, establishing the contribution
of individual genes to the overall pathogenicity of CNV syndromes is difficult and often relies on the identification of potential candidates through
manual searches of the literature and online resources. We describe here the development of a computational framework to comprehensively search
phenotypic information from model organisms and single-gene human hereditary disorders, and thus speed the interpretation of the complex
phenotypes of CNV disorders. There are currently more than 5000 human genes about which nothing is known phenotypically but for which detailed
phenotypic information for the mouse and/or zebrafish orthologs is available. Here, we present an ontology-based approach to identify similarities
between human disease manifestations and the mutational phenotypes in characterized model organism genes; this approach can therefore be
used even in cases where there is little or no information about the function of the human genes. We applied this algorithm to detect candidate
genes for 27 recurrent CNV disorders and identified 802 gene-phenotype associations, approximately half of which involved genes that were previously
reported to be associated with individual phenotypic features and half of which were novel candidates. A total of 431 associations were made solely
on the basis of model organism phenotype data. Additionally, we observed a striking, statistically significant tendency for individual disease phenotypes
to be associated with multiple genes located within a single CNV region, a phenomenon that we denote as pheno-clustering. Many of the clusters
also display statistically significant similarities in protein function or vicinity within the protein-protein interaction network. Our results provide a
basis for understanding previously un-interpretable genotype-phenotype correlations in pathogenic CNVs and for mobilizing the large amount of
model organism phenotype data to provide insights into human genetic disorders.
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enriched with genes whose mouse orthologs, when disrupted, result
in a nervous system phenotype (Boulding and Webber, 2012; Hehir-
Kwa et al., 2010; Webber et al., 2009).

The use of non-human models has proved to be one of the most
powerful approaches to understanding human disease (Rosenthal
and Brown, 2007; Schofield et al., 2010). The description of abnormal
phenotypes to model organisms can inform our understanding of
the pathogenicity of human mutations, help prioritize candidate
genes identified from genome-wide association studies (GWAS) and
other investigations, and help dissect complex disease syndromes
(Boulding and Webber, 2012). For the mouse, we now have
phenotypes for around 8500 genes, and 40,000 genotypes with
phenotypic annotations, in the Mouse Genome Informatics database
(Blake et al., 2011). All of these phenotypes are coded using the
Mammalian Phenotype Ontology (MPO) (Smith and Eppig, 2009;
Smith et al., 2005). For zebrafish, there are more than 60,000
phenotypic descriptions of many thousands of genotypes, encoded
using Entity Quality syntax (Washington et al., 2009). The recently
launched International Mouse Phenotyping Consortium and the
Zebrafish Mutation Project, which aim to systematically phenotype
knockout lines for every protein-coding gene in the mouse and
zebrafish genomes (Bartsch et al., 2005; Brown and Moore, 2012),
will provide the most comprehensive phenotypic descriptions of any
higher organisms. Together with data already available in other model
organism databases, this provides an increasingly rich resource that

can be leveraged to understand the consequences of human mutation
and functionally dissect the human genome. The barrier to
computational use of these data has been the disparate and non-
standardized way of describing human phenotypic data, which has
traditionally relied on free text or terminologies designed for medical
management, billing and epidemiology (Schofield et al., 2010). The
advent of the Human Phenotype Ontology (HPO) (Robinson et al.,
2008; Robinson and Mundlos, 2010) addresses these problems with
human data and is increasingly being used by clinical geneticists and
systems biologists; we are now in a position to address the cross-
mining of phenotype data from humans and model organisms to
enormous benefit. Cross-species ontological approaches that use
computer reasoning over phenotype ontologies offer a promising new
methodology to identify similarities between human disease
manifestations and observations made in genetically modified model
organisms (Hoehndorf et al., 2011; Mungall et al., 2010; Washington
et al., 2009). Ontologies are knowledge representations that use
controlled vocabularies designed to facilitate knowledge capture and
computer reasoning (Robinson and Bauer, 2011). An ontology
provides a computational representation of the concepts of a domain
together with the semantic relations between them. The use of
ontologies for phenotypic analysis is discussed in Schofield et al. and
Gkoutos et al. (Schofield et al., 2011; Gkoutos et al., 2012).

In this study, we introduce a computational algorithm that takes
advantage of computable definitions of human, mouse and zebrafish
phenotypes to perform genome-wide interspecies phenotype
comparisons to detect candidate genes in recurrent hereditary CNV
disorders. We have computationally examined the relationships
between phenotypes associated with recurrent CNV disorders and
phenotypes associated with human and model organism single-gene
diseases whose genes are located within the CNV intervals. We have
identified a total of 802 candidate genes for individual phenotypic
features, approximately half of which were not previously reported
in the literature. We additionally found a striking tendency for
individual phenotypic features in CNV disorders to be associated
with two or more individual genes located within the CNV. In many
cases, these genes share functions or are located in close proximity
to one another within the protein interactome. Thus, our work
provides a framework for the interpretation of CNV-associated
phenotypes, suggesting that clustering of functionally related genes
within CNVs might be an important factor related to the phenotypic
abnormalities seen in affected individuals.

RESULTS
We have developed a computational framework to harness
phenotypic information from model organisms and single-gene
human hereditary disorders to gain insights into the genetic
etiology of the complex phenotypes of CNV disorders (Fig. 1). The
goal of our analysis was to identify genes located within CNVs that
are most likely to be responsible for the individual phenotypic
abnormalities of the disease (Table 1). All available phenotype data
for humans, mice and zebrafish were integrated for this analysis,
resulting in a total of 7546 phenotypically described gene families,
including 5703 for which phenotypes were only available from the
model organisms (Fig. 2). In total, 802 genes were identified for
individual phenotypic features of 27 different recurrent CNV
disorders, including 346 newly identified associations (Table 2;
supplementary material Tables S1, S2). For the 27 CNV diseases

TRANSLATIONAL IMPACT

Clinical issue
More than 60 disease syndromes, covering a wide range of systems, have been
associated with copy number variation (CNV) in the human genome. With the
advent of whole genome sequencing, many more CNVs are being found in
patients with previously unreported phenotypes. With currently available
approaches, it is difficult to determine whether these CNVs cause the disease
phenotype, or whether dosage effects of certain genes in the segment are
responsible for specific aspects of the disease. Moreover, there are more than
5000 human genes about which nothing is known phenotypically, but for
which detailed phenotypic information about their orthologs in model
organisms is available. This study introduces a novel computational method
for prioritizing candidate human disease genes using model organism
phenotype data, and is applicable on a genome-wide scale.

Results
For 27 recurrent CNV disorders, the authors identify 802 gene-phenotype
associations. Approximately half of these associations were previously
reported and half were novel candidate associations. 431 associations were
made solely on the basis of model organism phenotype data. The authors also
observed a striking and statistically significant tendency for individual disease
phenotypes to be associated with multiple genes located within a single CNV
region, a phenomenon that they denote as ‘pheno-clustering’. Many of the
members in a given cluster display statistically significant similarity in protein
function, or vicinity within the protein-protein interaction network.

Implications and future directions
This study represents proof-of-principle for using phenotype data from model
organisms to augment human clinical data to establish candidate disease
genes. This method can, in principle, be extended to help with prioritizing
candidates in GWAS and other association studies. In summary, this method
represents an important new computational application for model organism
phenotype data, and is expected to be widely applicable for interpreting
individual genotype and precision phenotype data emerging from
personalized medicine.
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Fig. 1. A computational algorithm for genome-wide interspecies comparisons that detects candidate genes in CNV disorders. Information about
phenotypic abnormalities in humans, mice and zebrafish together with the affected anatomical structures, functions, cells, chemicals and proteins is used to
construct uberpheno, a phenome-wide network for cross-species comparison. To characterize the basis for phenotypic abnormalities seen in CNV disorders,
phenotypic annotations for the CNVs, as well as for all single-gene disorders in humans and model organisms, is assembled together with links between
orthologous genes. The figure shows an example CNV associated with five phenotypic features (HP1-HP5); the human genes located within the CNV, together
with their orthologs in mouse and fish, are shown as squares. Arrows indicate a direct association derived from a database annotation and lines with circles
connect orthologous genes. Phenome-wide analysis of these data is performed to characterize a ‘phenogram’, a network of genes and phenotypes for each CNV.
Finally, the involved genes are analyzed with respect to functional similarity and vicinity in the protein interaction network.
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investigated in this work, a total of 468 of their respective
phenotypic features could be explained on the basis of phenotypes
associated with 802 single-gene mutations in humans, mice or
zebrafish. The analysis consisted of four primary tasks: construction
of logical definitions of pre-composed phenotype ontology terms,
cross-species integration, calculation of information content of
individual phenotype terms, and statistical comparison of
phenotypes. For the frequent cases in which multiple individual
genes provide a potential explanation for a phenotypic feature, the
relationship of the genes to one another in the protein interactome
and Gene Ontology functional space was examined (Fig. 1; see
Materials and Methods, and supplementary material Table S3,
which contains further details of the methods used).

The integration is possible because the computable definitions
make use of the more atomic and species-agnostic elements from
which each of the individual phenotypic classes is formed. For
example, the HPO term ‘increased bone mineral density’ is composed
of the Quality (PATO) term ‘increased density’ and the human
anatomy term ‘bone organ’, which itself is a subclass of the Uberon
(cross-species anatomy ontology) class ‘bone’. A variety of such atomic
ontologies covering biological processes, small molecules, cell types
and anatomical structures are used to construct the logical (i.e.
computable) definitions. In the second phase, our algorithm traverses
the phenotype ontologies to integrate information from humans,
mice and zebrafish semantically into a single composite ontology:
‘uberpheno’. Thus, we combine information about the phenotype of

Table 1. Summary of the 27 CNV disorders 

Disease ID1 

Phenotype 

annotations 

f>15% (total) 

Genes in CNV interval 

P-value Total 

Genes with 

phenotype 

information 

Phenogram 

candidate 

genes 

Previously 

reported 

phenogram 

candidate genes 

Xq28 (MECP2) duplication D:45 14 (31) 23 12 6 2 <0.0002 

NF1-microdeletion syndrome MIM:613675 27 (32) 13 3 2 2 <0.0002 

Leri-Weill dyschondrostosis MIM:127300 13 (26) 1 1 1 1 0.0002 

Familial adenomatous polyposis MIM:175100 4 (19) 3 1 1 1 0.0002 

WAGR 11p13 deletion syndrome MIM:194072 9 (14) 5 2 2 2 0.0004 

Pelizaeus-Merzbacher disease MIM:312080 21 (26) 9 3 2 1 0.0004 

Potocki-Shaffer syndrome MIM:601224 23 (25) 15 9 4 2 0.0026 

Split hand/foot malformation 1 MIM:183600 9 (11) 6 3 2 2 0.005 

Sotos syndrome MIM:117550 21 (38) 39 14 6 2 0.0122 

Rubinstein-Taybi syndrome MIM:180849 73 (112) 1 1 1 1 0.0138 

Angelman syndrome MIM:105830 25 (34) 50 9 7 3 0.0184 

RCAD (renal cysts and diabetes) MIM:137920 14 (23) 11 4 3 1 0.0216 

Williams-Beuren syndrome MIM:194050 68 (92) 34 13 11 4 0.0316 

Wolf-Hirschhorn syndrome MIM:194190 64 (81) 36 13 7 3 0.0478 

Potocki-Lupski syndrome MIM:610883 28 (32) 47 22 10 1 0.0628 

9q subtelomeric deletion syndrome MIM:610253 29 (38) 8 2 2 1 0.0662 

Phelan-Mcdermid syndrome MIM:606232 43 (54) 4 4 3 1 0.0728 

Prader-Willi syndrome MIM:176270 52 (66) 50 9 8 5 0.0788 

17q21.3 microdeletion syndrome MIM:610443 37 (51) 6 2 2 0 0.1094 

Miller-Dieker syndrome MIM:247200 41 (42) 37 21 15 9 0.1192 

15q26 overgrowth syndrome D:81 31 (37) 29 5 4 1 0.2028 

1p36 microdeletion syndrome MIM:607872 60 (86) 70 22 12 4 0.2762 

Smith-Magenis syndrome MIM:182290 40 (46) 47 22 13 4 0.2916 

15q24 microdeletion syndrome MIM:613406 56 (65) 36 15 8 1 0.2938 

1q21.1 susceptibility locus (TAR) MIM:274000 16 (44) 19 5 3 0 0.3178 

Cri du Chat syndrome MIM:123450 48 (68) 42 21 11 0 0.3374 

3q29 microduplication syndrome MIM:611936 14 (22) 22 6 2 1 0.5156 
1OMIM (MIM); DECIPHER (D). 

Included are the total number of phenotypic annotations with a frequency threshold of 15% (f>15%), as well as (in parentheses) the total number of annotations for that CNV 

disorder; the numbers of genes per CNV interval: total number of genes in the interval; number of genes with phenotype information (this is the number of genes that were 

included in the analysis); the number of phenogram candidate genes (i.e. those genes with phenotypic features in single -gene diseases in humans or model organisms that are 

similar to the features of the CNV disorders) identified in our study; the number of phenogram candidate genes that have been previously reported in the literature for the CNV 

disorder, as well as the empirical P-values for 10,000 randomizations (rows are sorted by P-value). The individual phenogram candidate genes as well as literature references for 

the previously reported gene-phenotype correlations are shown in supplementary material Table S1; for a detailed list of gene-phenotype associations see also supplementary 

material Table S2. 
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a human CNV disorder, the phenotypes (if known) of every human
gene contained within the various possible CNVs, and the phenotypes
of each of the gene orthologs in mouse and zebrafish. In the third
step, the information content (IC) (Shannon, 1948) is calculated for
each of the phenotypes in the composite ontology to provide a
measure of how informative those annotations are. The IC is based
on the number of genes annotated to the term in humans, mice and
zebrafish. Very specific terms are associated only with very few genes
and therefore have a high IC; nonspecific phenotypes associated with
many genes have a low IC (Resnik, 1995). In the comparison step,
each of the phenotypic descriptions for each of the genes is searched
for similarity to each of the CNV phenotypes. Every phenotype
scoring above a similarity threshold is selected to be part of the
resulting ‘phenogram’ (described below; see also ‘Quantification of
phenogram score’ in the Materials and Methods section), and each
phenogram is scored according to its IC power sum. An empirical
P-value is calculated for a phenogram by performing the entire

analysis 5000 times with the same CNV phenotypes, but using
randomized sets of genes. Our results are highly statistically
significant; compared with the analyzed 27 CNV diseases, a total of
~480 of their respective phenotypic features could be explained,
whereas in the randomized experiments, the average number of
phenotypic features explained was ~250 (Fig. 3A).

For a number of the 27 CNVs analyzed, a critical gene is already
known or highly suspected. Our results are highly consistent with
these previous findings, supporting our computational methodology
and interpretation, and we could additionally identify many
previously unknown gene-phenotype connections (Table 3). The
label ‘major gene’ in Table 3 refers to CNV disorders for which one
gene is known to be the major player in the disease because
intragenic mutations lead to a very similar phenotype in which most
of the major phenotypic abnormalities characterizing the disease are
present. It is common for individuals with the CNV disorder to
present with more severe and/or additional features compared with
individuals with intragenic single-gene mutations. Phenotypic
variability of course also occurs within both cohorts of individuals
– those with point mutations and those with the CNV disorder –
which can make it difficult to pinpoint the systematic phenotypic
differences between single-gene and CNV disorders. The underlying
difficulty is also apparent in the current use of nomenclature:
patients with the CNV disorder and patients with a point mutation
in the ‘main’ disease-causing gene are defined as having ‘Sotos
syndrome’ or ‘neurofibromatosis’ or ‘Smith-Magenis syndrome’, for
example. Certainly, an individual with a microdeletion at 5q35 can
be said to have Sotos syndrome but, even though most major features
of the syndrome are present in cases of microdeletion and intragenic
mutation, more or less obvious differences in phenotypic severity
and additional abnormalities might be observed. In these cases, our
method indicates where such additional effects might be present and
offers information on additional genes and their potential
contribution to certain phenotypic features of the disease.

Inclusion of data from different species into analyses such as
ours is important because different model organisms can contribute
distinct kinds of information. Our analysis results also support this
concept, with interesting findings not just from mouse models but
also from zebrafish: for the 15q26 overgrowth syndrome,
micrognathia might be associated with haploinsufficiency of the
gene CHSY1, an association drawn as a result of the zebrafish
phenotype ‘abnormally decreased size mandibular arch skeleton’,
whereas sensorineural hearing impairment might be a result of
haploinsufficiency of IGF1R, which causes ‘abnormally absent
inner ear hair cell’ in zebrafish models. Future projects will aim to
include additional model organism data. The need for phenotype
comparisons with further species has also been made evident only
recently by the discovery of the major disease-causing gene for the
17q21.3 microdeletion syndrome, KANSL1. For this gene, no
information was available from human, mouse or zebrafish, but it
has been shown in 2010 by Lone et al. that Drosophila mutants
show defects in synaptic vesicle biogenesis and trafficking, resulting
in reduced learning ability (Lone et al., 2010).

Phenograms: prediction and visualization of genotype-phenotype
associations
A phenogram of a CNV represents the network of genes and related
phenotypes that have been associated with the genes in a particular

1843 Human genes
with ortholog in mouse/zebrafish and HP annotation

6535 Mouse genes
with human ortholog and MP annotation

1625 Zebrafish genes
with human ortholog and ZFIN annotation
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B

Fig. 2. Phenogram data and sources of explanations. (A)Venn diagram
displaying the total numbers of human, mouse and zebrafish orthologous
genes with phenotypic information. There are 5703 genes with phenotype
data in mouse or zebrafish for which no human phenotype data are available.
(B)Sources of the explanations of the 802 predicted phenotypic features of
the 27 CNV disorders examined in this work. 431 of the 802 predictions were
made only on the basis of model organism data (54%).
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CNV interval. All phenotype matches above a threshold, calculated
based on the phenotype IC of the closest match (Resnik, 1995), are
used to form a phenogram. For example, Rubinstein-Taybi
syndrome is thought to result from haploinsufficiency of a single
gene and, unsurprisingly, 19 of the phenotypic features of
Rubinstein-Taybi syndrome were all assigned to CREBBP (Fig. 4).
A more representative phenogram is observed in the analysis for
Williams syndrome: from the original 68 frequent phenotypes and
13 phenotypically described genes in the CNV, the analysis
generated a profile of 32 phenotypic abnormalities connected to
11 candidate genes through 39 associations. These included 16 of
23 previously reported associations (Pober, 2010) and 23 novel
associations (Fig. 5). Note that, for Williams syndrome, we
identified many phenotypic features that were associated with more

than one candidate gene, i.e. multiple different genes all produce
a similar phenotype.

In addition, the results indicate that dosage effects of other genes
in an interval can present as modifying factors. For instance, the
9q subtelomeric deletion syndrome, clinically characterized by
mental retardation, childhood hypotonia and facial dysmorphism,
has been thought to result from haploinsufficiency of EHMT1,
because point mutations in this gene cause a similar phenotype
(Verhoeven et al., 2010). Our analysis identifies CACNA1B as a
potential additional contributor to sleep disturbances and
behavioral problems found in affected individuals. Similarly, point
mutations in HNF1B are a known cause of RCAD (renal cysts and
diabetes), but, in cases of microdeletions, haploinsufficiency of
ACACA, which plays a role in glucose homeostasis, might

 Table 2. Details of type and origins of results 

Disease 

Novel gene-phenotype associations  

 Previously reported 

gene-phenotype associations 

Total HS MP ZP  Total HS MP ZP 

Xq28 (MECP2) duplication 0 0 0 0  28 26 5 0 

NF1-microdeletion syndrome 1 0 0 1  22 16 13 0 

Leri-Weill dyschondrostosis 0 0 0 0  9 9 0 0 

Familial adenomatous polyposis 0 0 0 0  4 4 4 0 

WAGR 11p13 deletion syndrome 0 0 0 0  9 9 4 1 

Pelizaeus-Merzbacher disease 1 0 0 1  10 8 6 0 

Potocki-Shaffer syndrome 6 1 5 1  11 7 5 0 

Split hand/foot malformation 1 0 0 0 0  15 0 15 0 

Sotos syndrome 2 0 2 0  27 27 0 2 

Rubinstein-Taybi syndrome 4 0 4 0  19 0 19 0 

Angelman syndrome 9 2 7 0  38 32 11 0 

RCAD (renal cysts and diabetes) 8 0 8 0  7 3 2 2 

Williams-Beuren syndrome 23 6 15 2  16 4 14 0 

Wolf-Hirschhorn syndrome 47 4 43 1  40 29 22 1 

Potocki-Lupski syndrome 10 0 10 0  29 28 6 0 

9q subtelomeric deletion syndrome 4 0 4 0  2 0 2 0 

Phelan-Mcdermid syndrome 6 0 5 1  14 6 9 1 

Prader-Willi syndrome 46 15 33 0  17 7 13 0 

17q21.3 microdeletion syndrome 14 9 6 0  1 0 1 0 

Miller-Dieker syndrome 18 0 15 3  28 9 22 0 

15q26 overgrowth syndrome 14 0 8 6  7 7 1 1 

1p36 microdeletion syndrome 67 26 35 8  28 13 13 2 

Smith-Magenis syndrome 19 0 19 0  32 21 12 0 

15q24 microdeletion syndrome 15 1 11 4  13 12 2 0 

1q21.1 susceptibility locus (TAR) 7 0 7 0  0 0 0 0 

Cri du Chat syndrome 23 1 21 1  29 28 1 1 

3q29 microduplication syndrome 2 0 0 2  1 0 1 0 

 = 802 

Gene-phenotype associations 
346 65 258 31 

 
456 305 203 11 

Included are the numbers of gene-phenotype associations, both novel and previously reported in the literature, as well as the corresponding numbers for the origins of the 

associations (HS, human; MP, mouse; ZP, zebrafish). In total, 802 gene-phenotype associations were made, corresponding to 346 novel and 456 previously reported 

associations. Note that the sum of the numbers of the origins for the predictions can be higher than the total numbers for novel or previously reported associations, because 

for some gene-phenotype associations there is evidence from more than one model organism, or from model organisms and other human diseases. All numbers correspond to 

single phenotype-to-gene associations – because one gene can be a candidate for more than one phenotypic abnormality, the numbers of these associations are higher than 

the total candidate gene numbers. For a list of candidate genes for each CNV disorder, see supplementary material Table S 1; for a detailed list of all the gene-phenotype 

associations, see supplementary material Table S2. 
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contribute to the diabetes phenotype, and haploinsufficiency of
LHX1 might modify susceptibility to renal abnormalities.

Phenograms for all 27 CNV disorders investigated in this 
work can be downloaded from http://compbio.charite.de/tl_files/
groupmembers/koehler/.

Pheno-clusters: composite effects of genes in CNV regions
A striking observation of our analysis was that numerous CNV
phenotypes could be clearly associated with multiple genes in the
interval, each of which in isolation has been shown to result in a

similar phenotypic abnormality. Such pheno-clusters – physical
clusters of genes associated with particular shared phenotypes in
the genome – might be causative for a larger subset of the
phenotypes observed in CNV disorders. Even genes that do not
show dosage effects in isolation might cause phenotypic
abnormalities if one or more additional pathway members are
simultaneously deleted. Such an effect has been observed for the
SHFM1 locus, where the genes DLX5 and DLX6 are known to cause
split-hand/split-foot malformation (SHFM). Existing mouse models
exhibit the SHFM phenotype only if both genes are knocked out
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Fig. 3. Phenome/genome systems analysis. (A-C)Histograms illustrating the distribution of phenotypes with phenogram matches for the 27 CNVs investigated
in this study (green arrow) versus randomly chosen CNVs (blue bars). (A)Number of phenotypes explained by one gene for randomly generated versus real CNVs.
(B)Number of phenotypes explained by multiple genes (pheno-clusters) for randomly generated versus real CNVs. (C)Percentage of phenotypes explained by
multiple genes as a percentage of all matching candidate genes for randomly generated versus real CNVs. All results in A-C are statistically significant. Results in C
support the conclusion that pheno-clusters are not a characteristic of randomly chosen chromosomal segments (P0.02). (D,E)Two pheno-clusters in which the
genes in question are closely linked in the protein interaction network are shown. Approximately 20% of patients with 1p36 microdeletions present with
‘cerebral cortical atrophy’ (HP:0002120) (Battaglia et al., 2008). Mouse models of TP73 are annotated to ‘abnormal cerebral cortex morphology’ (MP:0000788) and
mouse models of GNB1 to ‘thin cerebral cortex’ (MP:0006254); both associations were identified by our analysis. TP73 and GNB1 are closely linked in the protein
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‘decreased anxiety-related response’ (MP:0001364), which is also an ‘abnormal emotion/affect behavior’ (MP:0002572). Both genes are linked through the gene
calmodulin 1 (CALM1) in the protein interaction network. Interestingly, Martins-de-Souza et al. (Martins-de-Souza et al., 2009) found that CALM1 is differentially
expressed in the temporal lobe of patients with schizophrenia. Our results indicate that a combined dosage effect of MAPT and CRHR1, via modulating effects on
CALM1, might explain some of the behavioral abnormalities observed in patients with 17q21.3 microdeletions.
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(Merlo et al., 2002; Robledo et al., 2002). Similarly, studies in murine
models of Williams syndrome indicate that deletion of the Eln gene
combined with the presence (non-deletion) of Ncf1 contributes to
the observed murine hypertension (Adams and Schmaier, 2012).

The interaction between different genes affected by a CNV is
potentially a very important determinant of clinical severity.

We investigated whether such phenotypic summation effects due
to pheno-clusters occur more often than would be expected by

Table 3. Comparison of results with previous findings. 

Disease Current knowledge of CNV etiology Analysis results 

Xq28 (MECP2) duplication Major gene: MECP2 (Ariani et al., 2004) MECP2  was recovered; additional candidates  

NF1-microdeletion syndrome Major gene: NF1 (Venturin et al., 2004) NF1  was recovered; additional candidate  

Leri-Weill dyschondrostosis Major gene: SHOX (Rappold et al., 2002) SHOX  was recovered  

Familial adenomatous polyposis Major gene: APC (Groden et al., 1991) APC  was recovered  

WAGR 11p13 deletion syndrome Multigenic: PAX6; WT1 (Fischbach et al., 2005) and additional PAX6  and WT1  were recovered; additional 

candidates  

Pelizaeus-Merzbacher disease Major gene: PLP1 (Boespflug-Tanguy et al., 1994) PLP1  was recovered; additional candidate  

Potocki-Shaffer syndrome Multigenic Suspected candidates recovered; novel 

candidates identified  

Split hand/foot malformation 1 Digenic: DLX5; DLX6 (Robledo et al., 2002) DLX5  and DLX6  were recovered  

Sotos syndrome Major gene: NSD1 (Kurotaki et al., 2002) NSD1  was recovered; additional candidates  

Rubinstein-Taybi syndrome Major gene: CREBBP (Hennekam, 2006; Tanaka et al., 1997) CREBBP  was recovered  

Angelman syndrome Major gene: UBE3A (Clayton-Smith and Laan, 2003; Jiang et al., 
1999) 

UBE3A  was recovered; additional candidates  

RCAD (renal cysts and diabetes) Major gene: HNF1B (Bellanné-Chantelot et al., 2004; Bingham  

et al., 2001) 
HNF1B  was recovered; additional candidates  

Williams-Beuren syndrome Multigenic Suspected candidates recovered; novel 

candidates identified  

Wolf-Hirschhorn syndrome Multigenic Suspected candidates recovered; novel 
candidates identified  

Potocki-Lupski syndrome Multigenic, or duplication of RAI1 ? (Potocki et al., 2007) RAI1  was recovered; additional candidates  

9q subtelomeric deletion syndrome Major gene: EHMT1 (Kleefstra et al., 2005) EHMT1  was recovered; additional candidates  

Phelan-Mcdermid syndrome Major gene: SHANK3 (Durand et al., 2007) SHANK3  was recovered; additional candidates  

Prader-Willi syndrome Multigenic Suspected candidates recovered; novel 
candidates identified  

17q21.3 microdeletion syndrome Major gene: KANSL1 (Zollino et al., 2012) Previously suspected candidates recovered; novel 

candidates identified; KANSL1  not recovered –  

no phenotype information from any organism!  

Miller-Dieker syndrome Multigenic Suspected candidates recovered; novel 

candidates identified  

15q26 overgrowth syndrome Multigenic Suspected candidates recovered; novel 

candidates identified  

1p36 microdeletion syndrome Multigenic Suspected candidates recovered; novel 

candidates identified  

Smith-Magenis syndrome Major gene: RAI1 (Girirajan et al., 2005; Slager et al., 2003) RAI1  was recovered; other suspected and novel 

candidates identified  

15q24 microdeletion syndrome Multigenic Suspected candidates recovered; novel 

candidates identified  

1q21.1 susceptibility locus (TAR) Major gene: RBM8A (Albers et al., 2012) Novel candidates identified;  RBM8A  not recovered 

– no phenotype information from any organism!  

Cri du Chat syndrome Multigenic Novel candidates identified  

3q29 microduplication syndrome Multigenic Suspected candidates recovered; novel candidate 
identified 

The column ‘Current knowledge of CNV etiology’ indicates whether the literature on the CNV considers the etiology to be related to the effects of dosa ge alteration of a 

single major gene or to the combined effects of multiple genes. The term ‘major gene’ is used to refer to CNV disorders in which one gene is known to be the major factor 

determining the disease phenotype because, in most cases, point mutations in that gene lead to a very similar phenotype. For most of these CNV disorders, this one gene 

is known to be ‘causative’ for the main features, but most patients with the CNV disorder present with more severe and/or additional features compared with patients 

with an intragenic single-gene mutation. The column ‘Analysis results’ summarizes the results of the current study, indicating whether the known candidate genes were 

recovered and whether our algorithm identified new candidate genes for the phenotypic abnormalities of the CNV.  

candidates
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chance. The total number of pheno-clusters in our analysis was more
than twice that of the randomized data (Fig. 3B). Because this could
in part be a consequence of the lower overall number of genes and
phenotypes identified in the randomized data, we examined the
percentage of phenotypes in the randomized data explained by
multiple genes. Even here, the percentage of pheno-clusters was
significantly greater for the real CNVs than expected by random
chance (P0.02; Fig. 3C). In all, pheno-clusters were predicted for
220 phenotypes, corresponding to 135 gene clusters (in some cases,
the same genes were associated with more than one phenotype).
Thus, from the total of 802 gene-phenotype predictions, 220 (~25%)
were explained by multiple genes, corresponding to pheno-clusters.
It is known that the chromosomal location of genes can be related
to their function. For instance, genes located adjacent to gene
deserts very often function as transcriptional regulators (Ovcharenko
et al., 2005). We therefore asked whether the functions of the genes
identified in the pheno-clusters tend to functionally cluster as well.
We analyzed the functional similarity of genes within each of the
135 pheno-clusters based on Gene Ontology criteria (see Materials
and Methods). Overall, 49 of the pheno-clusters demonstrated a
statistically significant intracluster similarity. We also used random
walk analysis to investigate whether the gene products of the genes
in the 135 pheno-clusters were in closer proximity in the protein
interactome than expected by chance (Köhler et al., 2008). In total,

27 of the pheno-clusters showed a statistically significant vicinity
score (see Materials and Methods), and 62 of the pheno-clusters
(46%) were validated by both methods. Fig. 3D,E shows examples of
statistically significant protein-protein interaction (PPI) network
results. Although these examples are not based on experimental
evidence, we note that explanations of CNV phenotypes currently
given in the literature are almost exclusively based on ‘guilt-by-
association’ from manual literature searches. In contrast, our results
are based on a comprehensive phenome-wide search across data from
humans and two model organisms. Our results also indicate the
importance of collecting detailed phenotype-genotype information
on patients with different forms of CNV diseases (i.e. due to point
mutations in a single gene, and due to microdeletions), because this
information could be relevant to their clinical management. Similar
conclusions apply to CNV disorders characterized by variable
intervals. For example, in Phelan McDermid syndrome, SHANK3
was initially thought to be responsible for most of the phenotype,
because it was included in the minimal critical region (Bonaglia et
al., 2001). Our analysis suggests that MAPK81P2 might contribute
to the behavioral and autistic features of the disease. Not all
individuals with this disease have deletions encompassing SHANK3.
Thus, either SHANK3 or MAPK81P2 might cause behavioral
problems, and combined haploinsufficiency of both genes might
increase the likelihood of autism. Currently, publicly available data
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matches see supplementary material Table S2. In contrast to Williams syndrome (see Fig. 5), all of the phenotypic features are attributable to a single gene. The
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http://compbio.charite.de/tl_files/groupmembers/koehler/.

D
ise

as
e 

M
od

el
s &

 M
ec

ha
ni

sm
s  

    
   D

M
M



Disease Models & Mechanisms 367

Phenotypic approach to CNV pathogenicity RESEARCH ARTICLE

do not include sufficient information about the phenotype and the
extent of the deletions to draw this conclusion. Our analysis thus
motivates further specific genotype-phenotype studies for CNV
disorders such as Phelan McDermid syndrome that are characterized
by variable interval sizes.

DISCUSSION
In clinical genetics, it is often difficult to decide whether a quantitative
variation in the genome is related to the observed phenotype, and
predicting consequences of haploinsufficiency is challenging (Huang
et al., 2010). To understand the functional impact of a given CNV
region, not only does the general issue of pathogenicity need to be
answered, but also the question of which of the genes included in
the CNV region are associated with which phenotypic abnormalities
present in the patient. Such information is invaluable for clinical
management. Patients with overlapping but different sized deletions
or duplications might present with different phenotypes that correlate
with the affected genes. For patient follow-up and screening
procedures, the information that one patient might, for example, have
a high cancer risk or a risk for developing diabetes or hypertension,
whereas another patient does not, might have a huge impact on
individual prognosis and treatment.

In this work, we developed a semantic algorithm for mapping
model organism phenotype data to equivalent human phenotypic
features. We used this algorithm to address the question of which
genes in CNVs are most likely to be causally related to individual
phenotypic features seen in the CNV based on the assumption that
an abnormal dosage in a gene is likely to lead to similar phenotypic
abnormalities as a loss- or gain-of-function mutation in the same
gene. In this way, we are able to exploit the wealth of phenotypic
information available for 5703 genes in model organisms for which
phenotypes of mutations in the human orthologs are unknown (Fig.
2). For the 27 well-characterized CNV disorders analyzed in this
work, we identified a total of 802 phenogram matches, i.e. genes
in which a monogenic disease in humans or model organisms is
associated with a phenotypic feature that is also seen in (or similar
to) one of the features of the CNV disorder. In order to test the
performance of our algorithm, we performed the identical analysis
5000 times on randomized data. On average, only 250 features were
identified, and the maximum number of features found in any of
the randomized runs was ~350 (Fig. 3A). We performed an
extensive literature search for previously reported phenotype
associations (supplementary material Table S2); comparison of the
results of our algorithm revealed that we identified 457 previously
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Fig. 5. Phenogram reveals 11 genes associated with 26 phenotypic abnormalities in Williams syndrome. See Fig. 4 for an explanation of the symbols.
Williams syndrome is known as one of the classical contiguous gene syndromes, where the phenotypic features are thought to be caused by haploinsufficiency
of a number of genes in the deleted interval. Some associations, for example the involvement of ELN in ‘supravalvular aortic stenosis’ or BAZ1B in ‘hypercalcemia’,
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reported associations. Additionally, we found 346 novel phenotype
associations that, to the best of our knowledge, have not been
previously recognized in the medical literature. Our algorithms
might additionally be valuable to incorporate model organism data
into other areas in human genetics, such as the prioritization of
variants found in exome sequencing projects.

Our work has several limitations. In Table 1, empirical probabilities
(P-values) for the phenogram scores (SPG) are given for each of the
27 CNV disorders. In total, 14 of the CNV disorders displayed
statistically significant scores (P<0.05), including clinically distinct
disorders such as WAGR and Sotos syndrome. There are several
possible reasons for the lack of statistical significance of the remaining
13 disorders, which could relate either to the limitations of our
computational approach, inadequate phenotypic annotations, or lack
of knowledge about the genes located within the CNV. An important
limitation of the approach as implemented in the current work is
that it depends upon the granularity of the phenotype descriptions.
More broadly used, nonspecific descriptions of abnormalities, such
as autism or intellectual disability, are not flagged as ‘statistically
significant’ because they are so frequently used. The calculated P-
values are based on the IC of the phenotypic features, and the IC of
intellectual disability is very low (IC3.2) because so many genes
(currently 392) are annotated to this term. Indeed, P-values of the
phenogram scores reported in Table 1 correlate with the granularity
of the phenotypic descriptions of the CNV disorders, shown as the
average IC of the CNV phenotypes and the IC of the phenogram-
matches; unsurprisingly, the P-values also correlate with the size of
the intervals, measured with respect to the absolute numbers of genes
and the numbers of genes with available phenotype information (see
figure 3.2 in section 3.9 of supplementary material Table S3). Many
recently characterized CNV disorders that have been delineated on
the basis of array-CGH (comparative genomic hybridization)
screening rather than clinical studies have substantially less-specific
clinical pictures. Nonspecific clinical phenotypes and high
phenotypic variability complicate diagnosis and could explain why
diseases associated with microdeletions or duplications of 3q29 (Ballif
et al., 2008) and microdeletions of 15q24 (Andrieux et al., 2009) do
not score as well as more distinct CNV disorders. Although the
current work concentrated on identifying statistically significant
phenotypic matches, an implementation of our method as a clinical
decision support system could be designed to show the best match
or matches for both specific and less specific phenotypic
abnormalities. We also note that the P-value as calculated in this
work is not a measure of the probability that the CNV is the cause
of the disease phenotype, which is the type of hypothesis testing that
one would use in a diagnostic setting. Rather, the statistical hypothesis
is a measure of whether the phenotypic abnormalities associated with
the individual genes within the CNV match the phenotype of the
CNV disorder better than one would expect by random chance,
which is a conservative way of evaluating the results of semantic
phenotype matching. It is to be expected that some degree of
phenotypic similarity to CNVs with complex phenotypes exists at
many other loci in the genome. For instance, hundreds of distinct
CNVs could be associated with phenotypes such as autism (Levy et
al., 2011), and indeed there is a high likelihood that a large deletion
anywhere in the genome will be pathogenic and result in one or more
abnormal phenotypic features (Vermeesch et al., 2007). Therefore,
the method presented in this work would need to be extended to

include other data, such as previous reports of comparable CNVs in
databases such as DECIPHER (Database of Chromosomal Imbalance
and Phenotype in Humans Using Ensembl Resources) (Firth et al.,
2009) and ISCA (Riggs et al., 2012), to be useful as a clinical
differential diagnosis support tool.

It is difficult to provide any direct experimental proof in humans
that altered dosage of a specific gene is responsible for a specific
phenotypic abnormality in a CNV disorder, unless monogenic
lesions also occur in isolation in other patients. Rather, candidate
genes are proposed based on the similarity of their single-gene
mutation phenotypes to the CNV phenotypes; for instance,
haploinsufficiency for ELN was proposed as the cause of
supravalvular aortic stenosis observed in individuals with Williams
syndrome because point mutations in the ELN gene also give rise
to this phenotype. A total of 456 of the 802 associations identified
by computational analysis in our study have been previously
proposed in the literature, thereby supporting our computational
approach (supplementary material Table S2). To the best of our
knowledge, 346 of the 802 associations offer novel candidate genes
for individual phenotypic features. We examined associations from
the literature that were not detected by our approach to determine
the extent and possible reasons for such false-negatives. Some
associations, such as FZD9 and ‘intellectual disability’ for Williams
syndrome (Pober, 2010), fell below the threshold for detection by
our method because of their very low IC. Others, such as the
association of genetic variants in STX1A and ‘impaired glucose
tolerance’ (Pober, 2010; Romeo et al., 2008), were not detected by
our method because they were based on human association studies
and are so far not reported in OMIM or any of the information
sources used in this study. Inclusion of these kinds of data, for
example from resources such as the Genetic Association Database
(GAD) (Becker et al., 2004) or GWAS Central (Thorisson et al.,
2009), in candidate gene prediction algorithms such as ours will
be addressed in future projects.

For neurological and neuropsychiatric phenotypes such as
intellectual disability, seizures, schizophrenia, mood disorders and
autism, genetic heterogeneity and variable expressivity and
penetrance are well-known features. Cytogenetic imbalances are
the most frequently identified cause of intellectual disability
(Aradhya et al., 2007), and CNVs are increasingly being detected
by array-CGH in individuals with neurological and
neuropsychiatric phenotypes (Akil et al., 2010). For such
phenotypes, dysregulation of relevant neural circuits might be
caused by disruption of single genes, but combinatorial effects of
variations in many genes affecting shared pathways have also been
proposed (Shaikh et al., 2011). Similarly, clustering of functionally
related genes has been proposed for bovine quantitative trait loci
(Salih and Adelson, 2009). We identified clustering of functionally
related genes within CNVs as a second important factor for
pathogenicity of CNVs in the human genome, not only for
neurological phenotypes, but also for various other phenotypic
features such as genitourinary, skeletal and metabolic abnormalities.
We found evidence that genes involved in pheno-clusters are often
functionally related to one another and tend to be near one another
in the PPI network (Fig. 3D,E).

There is abundant evidence now that there is functional clustering
in all mammalian genomes. Presumably, the phenotypic clustering
observed in our study is related to the clustering of functional
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neighborhoods of genes across chromosomes, which is even partially
conserved across species (Al-Shahrour et al., 2010). In some cases,
clustering is associated with areas of strong linkage disequilibrium,
suggesting that coinheritance of combinations of alleles of genes
whose products interact or are associated with the same pathway or
function might be the evolutionary driving force. Interestingly,
functional clusters shared by different species do not always seem
to consist of orthologs, suggesting that evolutionary pressure is
exerted upon the cluster’s function rather than the individual genes
within it (Al-Shahrour et al., 2010; Michalak, 2008; Petkov et al., 2005).
To date, there has been no explicit global analysis of the clustering
of gene function, location, process, pathway or expression patterns
involved in human CNVs, but the possibility of epistatic relationships
between these genes would be predicted to be strong. There is,
however, some evidence that certain functional gene classes are
overrepresented in areas of the genome containing common CNVs
(Conrad et al., 2010). Our data provides for the first time a breakdown
of the ‘phenotypic readout’ from regions involved in CNVs and
strongly suggests that they contain functionally clustered genes
(Michalak, 2008; Petkov et al., 2005; Stranger et al., 2007). The results
of our study shed new light on the pathobiology of human CNVs
and provide evidence that the concept of clustering of phenotypically
related genes plays an important role in genome pathology.

Another important aspect of our study is that 377 of the 629 genes
analyzed did not have any human or model organism phenotype
information. Thus, systematic genome-wide phenotyping efforts such
as the International Mouse Phenotyping Consortium (Brown and
Moore, 2012) and corresponding efforts in zebrafish (Kettleborough
et al., 2011; Wang et al., 2007), such as the Zebrafish Mutation Project,
have great potential to provide additional insights and candidates
for genes involved in human disease. Algorithms such as ours that
make use of phenotypic similarities between human and model
organisms will facilitate the computational integration of information
from these projects, harnessing these increasingly rich resources to
help us understand the consequences of human mutation and
functionally dissect the human genome. Our algorithms can be
adapted to assist with interpretation and understanding of the
diagnostic results from array-CGH analyses. Similar algorithms can
be developed for interpreting next-generation sequencing data,
thereby moving closer to the objective of a personalized genetic
approach to medical care.

MATERIALS AND METHODS
Phenotype annotations using ‘uberpheno’, a cross-species
phenotype ontology
We downloaded 17 ontologies from the Open Biological and
Biomedical Ontologies (OBO) Foundry website (Smith et al., 2007)
and constructed the logical definitions for HPO terms and MPO
terms from these. The definitions can thereby serve to relate entities
across the three species for common biological processes, small
biological molecules and cell types. The anatomical terms used in
the phenotype definitions, from the corresponding anatomical
ontologies of the three species, were related to one another using the
metazoan anatomy ontology Uberon (Mungall et al., 2012). Using
these definitions, we created a single combined cross-species ontology
called ‘uberpheno’ that represents phenotypes in mouse, human and
zebrafish (Köhler et al., 2011). Full details of the construction of
uberpheno are provided in supplementary material Table S3.

The phenotype ontologies do not themselves represent diseases,
but rather describe individual phenotypic abnormalities. Any one
disease may comprise one or more such abnormalities; therefore,
each disease is represented computationally by an annotation to
multiple phenotypic abnormalities. For this work, we compiled
phenotype annotations from multiple sources. All available
phenotypic information from humans was extracted from the HPO
annotations, the majority of which are based on data from the OMIM
knowledgebase (Amberger et al., 2009). Data on 6535 murine models
were obtained from the Mouse Genome Informatics (MGI) database
(Shaw, 2009), and detailed phenotypic annotations for 1625 zebrafish
models were taken from ZFIN (Zebrafish Model Organism Database)
(Bradford et al., 2011). The 27 recurrent CNV disorders examined
in this work were manually curated using HPO terms to generate
comprehensive sets of annotations. The main sources for the manual
annotation were recent publications, GeneReviews (Pagon et al.,
1993), OMIM (Amberger et al., 2009) and a standard reference work
on dysmorphology in human genetics (Jones and Smith, 1997). The
intervals and corresponding genes included in the intervals of the
chosen CNVs were taken from DECIPHER (Firth et al., 2009). For
this project, a conservative approach was chosen by including all
genes in a maximal critical region as stated by DECIPHER. For some
diseases, a gene that was not included by DECIPHER was added to
the list for the corresponding CNV because of evidence from recent
publications stating involvement of the gene. For detailed information
on individual annotations including references for all annotated
phenotypes, as well as the complete gene lists for the intervals of all
27 CNV disorders, see supplementary material Table S4.

Computational strategy for CNV analysis
The analysis of a CNV begins with the set of genes 
(GCNV  {g1, g2, …, gn}) located within the CNV. For each of the genes
(gi Œ GCNV) there is a set (Tgi

) of associated phenotype terms from
human single-gene disorders and from available mouse and zebrafish
models. Similarly, TCNV represents the set of phenotypes associated
with the particular CNV disorder. Phenotype annotations for humans
(HPO), mouse (MPO) and zebrafish (directly composed Entity and
Quality annotations) are mapped to the corresponding terms in
uberpheno. Phenotypic features that are only rarely associated with
the CNV (i.e. less than 15% of affected persons show the feature)
were removed from TCNV before further analysis.

Information content of phenotype terms
The IC of a term t is defined as the negative logarithm of the
frequency of annotations to the term (Resnik, 1995): IC(t)  –logpt,
where pt is the probability of annotations to term t of uberpheno
among all annotated genes in humans, mice and zebrafish.

Common ancestors
We define anc(·) as a function that, for a given term or set of terms,
returns the set of ancestral terms (i.e. inferred super-classes). Note,
this function is reflexive, i.e. t Œanc(t). The set of common
ancestors of an uberpheno term Tgi

associated with gene gi and the
set of uberpheno terms associated with the CNV is defined as:

We define tmax(tgi,TCNV) to be a term with the highest information
content from the set CA(tgi,TCNV).

CA t T t t T t, anc anc . (1)g CNV CNV gi i  { }( ) ( )( )= ∈ ∩
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Phenograms
We define the phenogram of the CNV as a structure (G,P,D,E,)
where G refers to the genes that have a matching phenotype above
the IC threshold , P are the matching gene phenotypes, and D
are the disorder phenotypes, with E the edges that connect them.
G consists of all genes in GCNV for which a single-gene phenotype
tg matches with a phenotype of the CNV with an information
content above the threshold, i.e. IC[tmax(tg,TCNV)]≥ (these genes
are shown as green squares in Figs 4 and 5). P consists of all
phenotypes in tmax(tg,TCNV) (shown as beige triangles in Figs 4,
5). The genes are connected to one or more shared phenotype
terms with the connections labeled according to the source
organism (HP, MP or ZP). Finally, the triangles are connected to
the phenotype terms of the CNV (TCNV; shown as blue circles)
that are explained by the matches. The phenograms were
visualized using Cytoscape (Shannon et al., 2003; Smoot et al.,
2011).

Quantification of phenogram score
For each gene, g ŒGCNV, a phenomatch score Sg is defined based
on the information content of all matching terms with specificity
above a certain similarity threshold  to exclude relatively non-
specific phenotypic features:

In our analysis, we selected  to be 2.5, corresponding to a
frequency for the feature of 786 among all 9580 analyzed genes.
By choosing k>1, terms with a higher IC receive higher weighting.
For this study, we selected k to be 5. The full phenogram score
across all genes located in the CNVs can then be calculated as:

We note that the HPO annotations for the 27 CNV disorders in
this work were created by manual curation. Additionally, OMIM
contains some entries that correspond to CNV diseases such as
Rubinstein Taybi Deletion syndrome (MIM:610543). To avoid
bias, these annotations were excluded when analyzing the
corresponding CNV. Table 1 shows empirical P-values based on
the SPG scores of the 27 CNV disorders. To calculate the P-values,
5000 intervals containing the same number of genes as the
original CNV were generated at random and SPG was calculated.
The P-value was estimated as the proportion of times in which
the randomized interval scored at least as high as the original
CNV.

Distribution of phenogram matches
Each of the phenotypic matches, i.e. genes (g) annotated to some
term (tg) whose similarity to a term in C exceeds the information
content threshold , represents a potential ‘explanation’ of a
phenotypic feature of the CNV. We reasoned that, although
individual matches could be due to chance, the total number of
above-threshold matches could provide a useful measure of the
utility of our method. For the complete analysis, we included all
genes from model organisms that have an ortholog in human as
well as phenotype information. All human genes located within

S g T IC t, ( ) . (2)g CNV
k

t T
IC t t T( )

g g

g CNVmax

 ∑( ) [ ]=

( )
∈

≥λ

S G T S g T, , . (3)PG CNV CNV g CNV
g GCNV

 ∑ ( )( ) =
∈

the CNV interval (GCNV) were then analyzed as described above,
and the number of terms in P were summed over all of the 27 CNV
disorders under consideration. We calculated an empirical P-value
for the distribution by keeping the set of CNVs and their phenotypic
abnormalities fixed while comparing them to randomly chosen sets
of genes (Gr) to replace the original set of genes (G). This was done
by randomly selecting a human gene (gr) and defining a random
interval (Gr) surrounding gr that contained the same number of
human genes as the original CNV.

Pheno-clusters and functional relatedness
In our analysis, we identified groups of genes (Gp) located in the
same CNV that are associated with the same phenotypic
abnormality. We investigated the hypothesis that these ‘pheno-
clusters’ of genes are not only related to the same phenotype but
also share similarity based on other biological measures. Here, we
calculated similarity based on Gene Ontology (GO) annotations
of the genes in Gp and examined the vicinity of the genes to one
another within PPI networks.

To compute the homogeneity of Gp  {g1, g2, …, gn} based on GO,
we compute the average pairwise similarity for all unique pairs of
genes in Gp: 

For a pair of genes, we calculate the symmetric semantic similarity
[simGO(gi, gj)] as in equation 2 of Köhler et al. (Köhler et al., 2009).
To determine a P-value for a given homogeneity score
[HOMGO(Gp)], we set up the empirical score distribution by
randomly generating 10,000 random gene groups (Gr) and
computing HOMGO(Gr), then estimating the P-value as the fraction
of cases in which HOMGO(Gr) ≥ HOMGO(Gp).

In order to test the hypothesis that genes in the same pheno-
cluster also tend to cluster in the human PPI network, we
analyzed a network containing 10,742 nodes, corresponding to
human genes coding for proteins with known interactions, as
described previously (Köhler et al., 2008). We constructed the
column-normalized adjacency matrix A and then computed the
random walk matrix P by P  [I – (1 – r)A]–1 � r, where I is the
identity matrix. Every entry (Pij) represents the probability of a
random walker starting at node i and being at node j after an
infinite number of steps. In every step, the walker randomly visits
adjacent nodes. Note that, with probability r, the walker is reset
to the start node i. In our study we set r to 0.75.

For a group of genes (Gp  {g1, g2, …, gn}), we compute the average
global network proximity [GNP(Gp)] by:

whereby p∞ is calculated as P � pi
o. To set up the vector of start

probabilities (pi
o), the start probability of a network node k is defined

as :

if gk Œ {Gp\gi}, and 0 otherwise. Thus, when analyzing a particular
gi, the random walker starts with equal probability from all nodes
in Gp except gi. Then, the random walk distance from all the start

HOM G
n n

sim g g
( – )

, . (4)GO p GO i j
j i
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nodes to gi is computed and the average over all gi ŒGp is taken as
the GNP(Gp).

Similar to the GO analysis, we determine a P-value for a given
score GNP(Gp) by calculating the empirical score distribution. This
was done by randomly generating 10,000 random gene groups (Gr)
and computing GNP(Gr). Afterwards, we estimate the P-value as
the fraction of cases in which GNP(Gr) ≥ GNP(Gp).
COMPETING INTERESTS
The authors declare that they do not have any competing or financial interests.

AUTHOR CONTRIBUTIONS
P.N.R., S.E.L., P.N.S. and M.W. conceived, coordinated and supervised the study. S.K.,
C.J.M., S.C.D. and S.B. developed the computational methods. S.K. and S.C.D.
performed the analysis and analyzed the data. S.C.D., S.K., C.J.M., G.V.G., B.J.R., C.S.,
D.S., E.K., P.N.R., P.N.S. and M.W. worked on ontology development and
annotations. S.C.D., S.K., S.E.L., P.N.S. and P.N.R. wrote the paper.

FUNDING
This work was supported by the Director, Office of Science, Office of Basic Energy
Sciences, of the US Department of Energy under Contract No. DE-AC02-
05CH11231, and by grants of the Deutsche Forschungsgemeinschaft (DFG RO
2005/4-1), the Bundesministerium für Bildung und Forschung (BMBF project
number 0313911), the MGD grant from the National Institutes of Health,
HG000330, the ZFIN grant from the National Institutes of Health, U41-HG002659
and the PATO grant from the National Institutes of Health, R01-HG004838.

SUPPLEMENTARY MATERIAL
Supplementary material for this article is available at
http://dmm.biologists.org/lookup/suppl/doi:10.1242/dmm.010322/-/DC1

REFERENCES
Adams, G. N. and Schmaier, A. H. (2012). The Williams-Beuren Syndrome-a window

into genetic variants leading to the development of cardiovascular disease. PLoS
Genet. 8, e1002479. 

Akil, H., Brenner, S., Kandel, E., Kendler, K. S., King, M. C., Scolnick, E., Watson, J.
D. and Zoghbi, H. Y. (2010). Medicine. The future of psychiatric research: genomes
and neural circuits. Science 327, 1580-1581. 

Al-Shahrour, F., Minguez, P., Marqués-Bonet, T., Gazave, E., Navarro, A. and
Dopazo, J. (2010). Selection upon genome architecture: conservation of functional
neighborhoods with changing genes. PLOS Comput. Biol. 6, e1000953. 

Albers, C. A., Paul, D. S., Schulze, H., Freson, K., Stephens, J. C., Smethurst, P. A.,
Jolley, J. D., Cvejic, A., Kostadima, M., Bertone, P. et al. (2012). Compound
inheritance of a low-frequency regulatory SNP and a rare null mutation in exon-
junction complex subunit RBM8A causes TAR syndrome. Nat. Genet. 44, 435-439.

Amberger, J., Bocchini, C. A., Scott, A. F. and Hamosh, A. (2009). McKusick’s Online
Mendelian Inheritance in Man (OMIM). Nucleic Acids Res. 37, D793-D796. 

Andrieux, J., Dubourg, C., Rio, M., Attie-Bitach, T., Delaby, E., Mathieu, M.,
Journel, H., Copin, H., Blondeel, E., Doco-Fenzy, M. et al. (2009). Genotype-
phenotype correlation in four 15q24 deleted patients identified by array-CGH. Am. J.
Med. Genet. A. 149A, 2813-2819. 

Aradhya, S., Manning, M. A., Splendore, A. and Cherry, A. M. (2007). Whole-
genome array-CGH identifies novel contiguous gene deletions and duplications
associated with developmental delay, mental retardation, and dysmorphic features.
Am. J. Med. Genet. A. 143A, 1431-1441. 

Ariani, F., Mari, F., Pescucci, C., Longo, I., Bruttini, M., Meloni, I., Hayek, G., Rocchi,
R., Zappella, M. and Renieri, A. (2004). Real-time quantitative PCR as a routine
method for screening large rearrangements in Rett syndrome: Report of one case of
MECP2 deletion and one case of MECP2 duplication. Hum. Mutat. 24, 172-177. 

Ballif, B. C., Theisen, A., Coppinger, J., Gowans, G. C., Hersh, J. H., Madan-
Khetarpal, S., Schmidt, K. R., Tervo, R., Escobar, L. F., Friedrich, C. A. et al. (2008).
Expanding the clinical phenotype of the 3q29 microdeletion syndrome and
characterization of the reciprocal microduplication. Mol. Cytogenet. 1, 8. 

Bartsch, O., Schmidt, S., Richter, M., Morlot, S., Seemanová, E., Wiebe, G. and Rasi,
S. (2005). DNA sequencing of CREBBP demonstrates mutations in 56% of patients
with Rubinstein-Taybi syndrome (RSTS) and in another patient with incomplete RSTS.
Hum. Genet. 117, 485-493. 

Battaglia, A., Hoyme, H. E., Dallapiccola, B., Zackai, E., Hudgins, L., McDonald-
McGinn, D., Bahi-Buisson, N., Romano, C., Williams, C. A., Brailey, L. L. et al.
(2008). Further delineation of deletion 1p36 syndrome in 60 patients: a recognizable
phenotype and common cause of developmental delay and mental retardation.
Pediatrics 121, 404-410. 

Becker, K. G., Barnes, K. C., Bright, T. J. and Wang, S. A. (2004). The genetic
association database. Nat. Genet. 36, 431-432. 

Bellanné-Chantelot, C., Chauveau, D., Gautier, J. F., Dubois-Laforgue, D., Clauin,
S., Beaufils, S., Wilhelm, J. M., Boitard, C., Noël, L. H., Velho, G. et al. (2004).
Clinical spectrum associated with hepatocyte nuclear factor-1beta mutations. Ann.
Intern. Med. 140, 510-517.

Bingham, C., Bulman, M. P., Ellard, S., Allen, L. I., Lipkin, G. W., Hoff, W. G., Woolf,
A. S., Rizzoni, G., Novelli, G., Nicholls, A. J. et al. (2001). Mutations in the
hepatocyte nuclear factor-1beta gene are associated with familial hypoplastic
glomerulocystic kidney disease. Am. J. Hum. Genet. 68, 219-224. 

Blake, J. A., Bult, C. J., Kadin, J. A., Richardson, J. E., Eppig, J. T. and the Mouse
Genome Database Group (2011). The Mouse Genome Database (MGD): premier
model organism resource for mammalian genomics and genetics. Nucleic Acids Res.
39, D842-D848. 

Boespflug-Tanguy, O., Mimault, C., Melki, J., Cavagna, A., Giraud, G., Pham Dinh,
D., Dastugue, B. and Dautigny, A. (1994). Genetic homogeneity of Pelizaeus-
Merzbacher disease: tight linkage to the proteolipoprotein locus in 16 affected
families. PMD Clinical Group. Am. J. Hum. Genet. 55, 461-467.

Bonaglia, M. C., Giorda, R., Borgatti, R., Felisari, G., Gagliardi, C., Selicorni, A. and
Zuffardi, O. (2001). Disruption of the ProSAP2 gene in a t(12;22)(q24.1;q13.3) is
associated with the 22q13.3 deletion syndrome. Am. J. Hum. Genet. 69, 261-268. 

Boulding, H. and Webber, C. (2012). Large-scale objective association of mouse
phenotypes with human symptoms through structural variation identified in
patients with developmental disorders. Hum. Mutat. 33, 874-883. 

Bradford, Y., Conlin, T., Dunn, N., Fashena, D., Frazer, K., Howe, D. G., Knight, J.,
Mani, P., Martin, R., Moxon, S. A. et al. (2011). ZFIN: enhancements and updates to
the Zebrafish Model Organism Database. Nucleic Acids Res. 39, D822-D829. 

Branzei, D. and Foiani, M. (2007). Template switching: from replication fork repair to
genome rearrangements. Cell 131, 1228-1230. 

Brown, S. D. and Moore, M. W. (2012). Towards an encyclopaedia of mammalian gene
function: the International Mouse Phenotyping Consortium. Dis. Model. Mech. 5, 289-
292. 

Clayton-Smith, J. and Laan, L. (2003). Angelman syndrome: a review of the clinical
and genetic aspects. J. Med. Genet. 40, 87-95. 

Conrad, D. F., Pinto, D., Redon, R., Feuk, L., Gokcumen, O., Zhang, Y., Aerts, J.,
Andrews, T. D., Barnes, C., Campbell, P. et al. (2010). Origins and functional impact
of copy number variation in the human genome. Nature 464, 704-712. 

Durand, C. M., Betancur, C., Boeckers, T. M., Bockmann, J., Chaste, P., Fauchereau,
F., Nygren, G., Rastam, M., Gillberg, I. C., Anckarsäter, H. et al. (2007). Mutations
in the gene encoding the synaptic scaffolding protein SHANK3 are associated with
autism spectrum disorders. Nat. Genet. 39, 25-27. 

Firth, H. V., Richards, S. M., Bevan, A. P., Clayton, S., Corpas, M., Rajan, D., Van
Vooren, S., Moreau, Y., Pettett, R. M. and Carter, N. P. (2009). DECIPHER: Database
of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources.
Am. J. Hum. Genet. 84, 524-533. 

Fischbach, B. V., Trout, K. L., Lewis, J., Luis, C. A. and Sika, M. (2005). WAGR
syndrome: a clinical review of 54 cases. Pediatrics 116, 984-988. 

Girirajan, S., Elsas, L. J., 2nd, Devriendt, K. and Elsea, S. H. (2005). RAI1 variations in
Smith-Magenis syndrome patients without 17p11.2 deletions. J. Med. Genet. 42, 820-
828. 

Gkoutos, G. V., Schofield, P. N. and Hoehndorf, R. (2012). Computational tools for
comparative phenomics: the role and promise of ontologies. Mamm. Genome 23,
669-679. 

Groden, J., Thliveris, A., Samowitz, W., Carlson, M., Gelbert, L., Albertsen, H.,
Joslyn, G., Stevens, J., Spirio, L., Robertson, M. et al. (1991). Identification and
characterization of the familial adenomatous polyposis coli gene. Cell 66, 589-600. 

Hamosh, A., Scott, A. F., Amberger, J. S., Bocchini, C. A. and McKusick, V. A. (2005).
Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes
and genetic disorders. Nucleic Acids Res. 33, D514-D517. 

Hehir-Kwa, J. Y., Wieskamp, N., Webber, C., Pfundt, R., Brunner, H. G., Gilissen, C.,
de Vries, B. B., Ponting, C. P. and Veltman, J. A. (2010). Accurate distinction of
pathogenic from benign CNVs in mental retardation. PLoS Comput. Biol. 6, e1000752. 

Hennekam, R. C. (2006). Rubinstein-Taybi syndrome. Eur. J. Hum. Genet. 14, 981-985. 
Hoehndorf, R., Schofield, P. N. and Gkoutos, G. V. (2011). PhenomeNET: a whole-

phenome approach to disease gene discovery. Nucleic Acids Res. 39, e119. 
Huang, N., Lee, I., Marcotte, E. M. and Hurles, M. E. (2010). Characterising and

predicting haploinsufficiency in the human genome. PLoS Genet. 6, e1001154. 
Jiang, Y., Lev-Lehman, E., Bressler, J., Tsai, T. F. and Beaudet, A. L. (1999). Genetics

of Angelman syndrome. Am. J. Hum. Genet. 65, 1-6. 
Jones, K. and Smith, D. (1997). Smith’s Recognizable Patterns of Human Malformation.

Philadelphia, PA: Saunders.
Kettleborough, R. N., Bruijn, E., Eeden, F., Cuppen, E. and Stemple, D. L. (2011).

High-throughput target-selected gene inactivation in zebrafish. Methods Cell Biol.
104, 121-127. 

Kleefstra, T., Smidt, M., Banning, M. J., Oudakker, A. R., Van Esch, H., de Brouwer,
A. P., Nillesen, W., Sistermans, E. A., Hamel, B. C., de Bruijn, D. et al. (2005).

D
ise

as
e 

M
od

el
s &

 M
ec

ha
ni

sm
s  

    
   D

M
M



dmm.biologists.org372

Phenotypic approach to CNV pathogenicityRESEARCH ARTICLE

Disruption of the gene Euchromatin Histone Methyl Transferase1 (Eu-HMTase1) is
associated with the 9q34 subtelomeric deletion syndrome. J. Med. Genet. 42, 299-306. 

Köhler, S., Bauer, S., Horn, D. and Robinson, P. N. (2008). Walking the interactome
for prioritization of candidate disease genes. Am. J. Hum. Genet. 82, 949-958. 

Köhler, S., Schulz, M. H., Krawitz, P., Bauer, S., Dölken, S., Ott, C. E., Mundlos, C.,
Horn, D., Mundlos, S. and Robinson, P. N. (2009). Clinical diagnostics in human
genetics with semantic similarity searches in ontologies. Am. J. Hum. Genet. 85, 457-
464. 

Köhler, S., Bauer, S., Mungall, C. J., Carletti, G., Smith, C. L., Schofield, P., Gkoutos,
G. V. and Robinson, P. N. (2011). Improving ontologies by automatic reasoning and
evaluation of logical definitions. BMC Bioinformatics 12, 418.

Kurotaki, N., Imaizumi, K., Harada, N., Masuno, M., Kondoh, T., Nagai, T., Ohashi,
H., Naritomi, K., Tsukahara, M., Makita, Y. et al. (2002). Haploinsufficiency of NSD1
causes Sotos syndrome. Nat. Genet. 30, 365-366. 

Levy, D., Ronemus, M., Yamrom, B., Lee, Y. H., Leotta, A., Kendall, J., Marks, S.,
Lakshmi, B., Pai, D., Ye, K. et al. (2011). Rare de novo and transmitted copy-number
variation in autistic spectrum disorders. Neuron 70, 886-897. 

Lone, M., Kungl, T., Koper, A., Bottenberg, W., Kammerer, R., Klein, M., Sweeney, S.
T., Auburn, R. P., O’Kane, C. J. and Prokop, A. (2010). The nuclear protein Waharan
is required for endosomal-lysosomal trafficking in Drosophila. J. Cell Sci. 123, 2369-
2374. 

Martins-de-Souza, D., Gattaz, W. F., Schmitt, A., Rewerts, C., Marangoni, S.,
Novello, J. C., Maccarrone, G., Turck, C. W. and Dias-Neto, E. (2009). Alterations in
oligodendrocyte proteins, calcium homeostasis and new potential markers in
schizophrenia anterior temporal lobe are revealed by shotgun proteome analysis. J.
Neural Transm. 116, 275-289. 

Merlo, G. R., Paleari, L., Mantero, S., Genova, F., Beverdam, A., Palmisano, G. L.,
Barbieri, O. and Levi, G. (2002). Mouse model of split hand/foot malformation type
I. Genesis 33, 97-101. 

Michalak, P. (2008). Coexpression, coregulation, and cofunctionality of neighboring
genes in eukaryotic genomes. Genomics 91, 243-248. 

Mungall, C. J., Gkoutos, G. V., Smith, C. L., Haendel, M. A., Lewis, S. E. and
Ashburner, M. (2010). Integrating phenotype ontologies across multiple species.
Genome Biol. 11, R2. 

Mungall, C. J., Torniai, C., Gkoutos, G. V., Lewis, S. E. and Haendel, M. A. (2012).
Uberon, an integrative multi-species anatomy ontology. Genome Biol. 13, R5. 

Ovcharenko, I., Loots, G. G., Nobrega, M. A., Hardison, R. C., Miller, W. and Stubbs,
L. (2005). Evolution and functional classification of vertebrate gene deserts. Genome
Res. 15, 137-145. 

Pagon, R. A., Bird, T. D., Dolan, C. R., Stephens, K. and Adam, M. P. (ed.) (1993).
Seattle (WA): University of Washington, Seattle. GeneReviews. 

Petkov, P. M., Graber, J. H., Churchill, G. A., DiPetrillo, K., King, B. L. and Paigen, K.
(2005). Evidence of a large-scale functional organization of mammalian
chromosomes. PLoS Genet. 1, e33. 

Pober, B. R. (2010). Williams-Beuren syndrome. N. Engl. J. Med. 362, 239-252. 
Potocki, L., Bi, W., Treadwell-Deering, D., Carvalho, C. M., Eifert, A., Friedman, E.

M., Glaze, D., Krull, K., Lee, J. A., Lewis, R. A. et al. (2007). Characterization of
Potocki-Lupski syndrome (dup(17)(p11.2p11.2)) and delineation of a dosage-
sensitive critical interval that can convey an autism phenotype. Am. J. Hum. Genet.
80, 633-649. 

Rappold, G. A., Fukami, M., Niesler, B., Schiller, S., Zumkeller, W., Bettendorf, M.,
Heinrich, U., Vlachopapadoupoulou, E., Reinehr, T., Onigata, K. et al. (2002).
Deletions of the homeobox gene SHOX (short stature homeobox) are an important
cause of growth failure in children with short stature. J. Clin. Endocrinol. Metab. 87,
1402-1406. 

Resnik, P. (1995). Using information content to evaluate semantic similarity in a
taxonomy. In International Joint Conference for Artificial Intelligence (IJCAI-95), pp.
448-453.

Riggs, E. R., Jackson, L., Miller, D. T. and Van Vooren, S. (2012). Phenotypic
information in genomic variant databases enhances clinical care and research: the
International Standards for Cytogenomic Arrays Consortium experience. Hum. Mutat.
33, 787-796. 

Robinson, P. N. and Bauer, S. (2011). Introduction to Bio-Ontologies. 517pp. Boca
Raton, FL: Taylor & Francis.

Robinson, P. N. and Mundlos, S. (2010). The human phenotype ontology. Clin. Genet.
77, 525-534. 

Robinson, P. N., Köhler, S., Bauer, S., Seelow, D., Horn, D. and Mundlos, S. (2008).
The Human Phenotype Ontology: a tool for annotating and analyzing human
hereditary disease. Am. J. Hum. Genet. 83, 610-615. 

Robledo, R. F., Rajan, L., Li, X. and Lufkin, T. (2002). The Dlx5 and Dlx6 homeobox
genes are essential for craniofacial, axial, and appendicular skeletal development.
Genes Dev. 16, 1089-1101. 

Romeo, S., Sentinelli, F., Cavallo, M. G., Leonetti, F., Fallarino, M., Mariotti, S. and
Baroni, M. G. (2008). Search for genetic variants of the SYNTAXIN 1A (STX1A) gene:

the -352 A>T variant in the STX1A promoter associates with impaired glucose
metabolism in an Italian obese population. Int. J. Obes. (Lond.) 32, 413-420. 

Rosenthal, N. and Brown, S. (2007). The mouse ascending: perspectives for human-
disease models. Nat. Cell Biol. 9, 993-999. 

Salih, H. and Adelson, D. L. (2009). QTL global meta-analysis: are trait determining
genes clustered? BMC Genomics 10, 184. 

Schofield, P. N., Gkoutos, G. V., Gruenberger, M., Sundberg, J. P. and Hancock, J.
M. (2010). Phenotype ontologies for mouse and man: bridging the semantic gap.
Dis. Model. Mech. 3, 281-289. 

Schofield, P. N., Sundberg, J. P., Hoehndorf, R. and Gkoutos, G. V. (2011). New
approaches to the representation and analysis of phenotype knowledge in human
diseases and their animal models. Brief. Funct. Genomics 10, 258-265. 

Schofield, P. N., Hoehndorf, R. and Gkoutos, G. V. (2012). Mouse genetic and
phenotypic resources for human genetics. Hum. Mutat. 33, 826-836. 

Shaikh, T. H., Haldeman-Englert, C., Geiger, E. A., Ponting, C. P. and Webber, C.
(2011). Genes and biological processes commonly disrupted in rare and
heterogeneous developmental delay syndromes. Hum. Mol. Genet. 20, 880-893. 

Shannon, C. E. (1948). A mathematical theory of communication. Bell Syst. Tech. J. 27,
379-423.

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N.,
Schwikowski, B. and Ideker, T. (2003). Cytoscape: a software environment for
integrated models of biomolecular interaction networks. Genome Res. 13, 2498-2504. 

Shaw, D. R. (2009). Searching the Mouse Genome Informatics (MGI) resources for
information on mouse biology from genotype to phenotype. Curr. Protoc.
Bioinformatics 1, 1.7.

Slager, R. E., Newton, T. L., Vlangos, C. N., Finucane, B. and Elsea, S. H. (2003).
Mutations in RAI1 associated with Smith-Magenis syndrome. Nat. Genet. 33, 466-468. 

Smith, C. L. and Eppig, J. T. (2009). The mammalian phenotype ontology: enabling
robust annotation and comparative analysis. Wiley Interdiscip. Rev. Syst. Biol. Med. 1,
390-399.

Smith, C. L., Goldsmith, C. A. and Eppig, J. T. (2005). The Mammalian Phenotype
Ontology as a tool for annotating, analyzing and comparing phenotypic information.
Genome Biol. 6, R7. 

Smith, B., Ashburner, M., Rosse, C., Bard, J., Bug, W., Ceusters, W., Goldberg, L. J.,
Eilbeck, K., Ireland, A., Mungall, C. J. et al. (2007). The OBO Foundry: coordinated
evolution of ontologies to support biomedical data integration. Nat. Biotechnol. 25,
1251-1255. 

Smoot, M. E., Ono, K., Ruscheinski, J., Wang, P. L. and Ideker, T. (2011). Cytoscape
2.8: new features for data integration and network visualization. Bioinformatics 27,
431-432. 

Stranger, B. E., Forrest, M. S., Dunning, M., Ingle, C. E., Beazley, C., Thorne, N.,
Redon, R., Bird, C. P., de Grassi, A., Lee, C. et al. (2007). Relative impact of
nucleotide and copy number variation on gene expression phenotypes. Science 315,
848-853. 

Tanaka, Y., Naruse, I., Maekawa, T., Masuya, H., Shiroishi, T. and Ishii, S. (1997).
Abnormal skeletal patterning in embryos lacking a single Cbp allele: a partial
similarity with Rubinstein-Taybi syndrome. Proc. Natl. Acad. Sci. USA 94, 10215-10220. 

Thorisson, G. A., Lancaster, O., Free, R. C., Hastings, R. K., Sarmah, P., Dash, D.,
Brahmachari, S. K. and Brookes, A. J. (2009). HGVbaseG2P: a central genetic
association database. Nucleic Acids Res. 37, D797-D802. 

Venturin, M., Guarnieri, P., Natacci, F., Stabile, M., Tenconi, R., Clementi, M.,
Hernandez, C., Thompson, P., Upadhyaya, M., Larizza, L. et al. (2004). Mental
retardation and cardiovascular malformations in NF1 microdeleted patients point to
candidate genes in 17q11.2. J. Med. Genet. 41, 35-41. 

Verhoeven, W. M., Kleefstra, T. and Egger, J. I. (2010). Behavioral phenotype in the
9q subtelomeric deletion syndrome: a report about two adult patients. Am. J. Med.
Genet. B Neuropsychiatr. Genet. 153B, 536-541.

Vermeesch, J. R., Fiegler, H., de Leeuw, N., Szuhai, K., Schoumans, J., Ciccone, R.,
Speleman, F., Rauch, A., Clayton-Smith, J., Van Ravenswaaij, C. et al. (2007).
Guidelines for molecular karyotyping in constitutional genetic diagnosis. Eur. J. Hum.
Genet. 15, 1105-1114. 

Wang, D., Jao, L. E., Zheng, N., Dolan, K., Ivey, J., Zonies, S., Wu, X., Wu, K., Yang,
H., Meng, Q. et al. (2007). Efficient genome-wide mutagenesis of zebrafish genes by
retroviral insertions. Proc. Natl. Acad. Sci. USA 104, 12428-12433. 

Washington, N. L., Haendel, M. A., Mungall, C. J., Ashburner, M., Westerfield, M.
and Lewis, S. E. (2009). Linking human diseases to animal models using ontology-
based phenotype annotation. PLoS Biol. 7, e1000247. 

Webber, C., Hehir-Kwa, J. Y., Nguyen, D. Q., de Vries, B. B., Veltman, J. A. and
Ponting, C. P. (2009). Forging links between human mental retardation-associated
CNVs and mouse gene knockout models. PLoS Genet. 5, e1000531. 

Zollino, M., Orteschi, D., Murdolo, M., Lattante, S., Battaglia, D., Stefanini, C.,
Mercuri, E., Chiurazzi, P., Neri, G. and Marangi, G. (2012). Mutations in KANSL1
cause the 17q21.31 microdeletion syndrome phenotype. Nat. Genet. 44, 636-638. 

D
ise

as
e 

M
od

el
s &

 M
ec

ha
ni

sm
s  

    
   D

M
M


	SUMMARY
	Introduction
	TRANSLATIONAL IMPACT
	Results
	Phenograms: prediction and visualization of genotype-phenotype associations
	Pheno-clusters: composite effects of genes in CNV regions

	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Discussion
	Fig. 5.
	MATERIALS AND Methods
	Phenotype annotations using ˘uberphenoˇ, a cross-species phenotype ontology
	Computational strategy for CNV analysis
	Information content of phenotype terms
	Common ancestors
	Phenograms
	Quantification of phenogram score
	Distribution of phenogram matches
	Pheno-clusters and functional relatedness

	Supplementary material

